Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Anesth Analg ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446700

RESUMO

BACKGROUND: Clinical data demonstrate that chronic use of opioid analgesics increases neuropathic pain in people living with human immunodeficiency virus (HIV). Therefore, it is important to elucidate the molecular mechanisms of HIV-related chronic pain. In this study, we investigated the role of the transcription factor cMyc, epigenetic writer enhancer of zeste homology 2 (EZH2), and sirtuin 3 (Sirt3) pathway in HIV glycoprotein gp120 with morphine (gp120M)-induced neuropathic pain in rats. METHODS: Neuropathic pain was induced by intrathecal administration of recombinant gp120 with morphine. Mechanical withdrawal threshold was measured using von Frey filaments, and thermal latency using the hotplate test. Spinal expression of cMyc, EZH2, and Sirt3 were measured using Western blots. Antinociceptive effects of intrathecal administration of antisense oligodeoxynucleotide against cMyc, a selective inhibitor of EZH2, or recombinant Sirt3 were tested. RESULTS: In the spinal dorsal horn, gp120M upregulated expression of cMyc (ratio of gp120M versus control, 1.68 ± 0.08 vs 1.00 ± 0.14, P = .0132) and EZH2 (ratio of gp120M versus control, 1.76 ± 0.05 vs 1.00 ± 0.16, P = .006), and downregulated Sirt3 (ratio of control versus gp120M, 1.00 ± 0.13 vs 0.43 ± 0.10, P = .0069) compared to control. Treatment with intrathecal antisense oligodeoxynucleotide against cMyc, GSK126 (EZH2 selective inhibitor), or recombinant Sirt3 reduced mechanical allodynia and thermal hyperalgesia in this gp120M pain model. Knockdown of cMyc reduced spinal EZH2 expression in gp120M treated rats. Chromatin immunoprecipitation (ChIP) assay showed that enrichment of cMyc binding to the ezh2 gene promoter region was increased in the gp120M-treated rat spinal dorsal horn, and that intrathecal administration of antisense ODN against cMyc (AS-cMyc) reversed the increased enrichment of cMyc. Enrichment of trimethylation of histone 3 on lysine residue 27 (H3K27me3; an epigenetic mark associated with the downregulation of gene expression) binding to the sirt3 gene promoter region was upregulated in the gp120M-treated rat spinal dorsal horn; that intrathecal GSK126 reversed the increased enrichment of H3K27me3 in the sirt3 gene promoter. Luciferase reporter assay demonstrated that cMyc mediated ezh2 gene transcription at the ezh2 gene promoter region, and that H3K27me3 silenced sirt3 gene transcription at the gene promoter region. CONCLUSION: These results demonstrated that spinal Sirt3 decrease in gp120M-induced neuropathic pain was mediated by cMyc-EZH2/H3K27me3 activity in an epigenetic manner. This study provided new insight into the mechanisms of neuropathic pain in HIV patients with chronic opioids.

2.
Am J Cancer Res ; 14(1): 274-299, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38323292

RESUMO

The microbiota residing in the gut environment is essential for host homeostasis. Increasing evidence suggests that microbial perturbation (dysbiosis) regulates cancer initiation and progression at local and distant sites. Here, we have identified microbial dysbiosis with the depletion of commensal bacteria as a host-intrinsic factor associated with metastatic dissemination to the bone. Using a mouse model of triple-negative mammary cancer, we demonstrate that a pre-established disruption of microbial homeostasis using an antibiotic cocktail increases tumor growth, enhanced circulating tumor cells, and subsequent dissemination to the bone. We found that the presence of pathogenic bacteria and loss of commensal bacteria in an antibiotic-induced gut environment is associated with sustained inflammation. Increased secretion of G-CSF and MMP-9 in intestinal tissues, followed by increased neutrophil infiltration and severe systemic inflammation in tumor-bearing mice, indicates the direct consequence of a dysbiotic microbiome. Increased neutrophil infiltration to the bone metastatic niche facilitates extravasation and transendothelial migration of tumor cells. It provides a novel, pre-established, and favorable environment to form an immunosuppressive pre-metastatic niche. The presence of tumor cells in immunosuppressive metastatic tumor niche disrupts the balance between osteoblasts and osteoclasts, promotes osteoclast differentiation, and remodels the bone structure. Excessive bone resorption by osteoclasts causes bone degradation and ultimately causes extreme pain in a bone metastatic mouse model. In clinical settings, bone metastasis is associated with intractable severe pain that severely compromises the quality of life in these patients.

3.
Gut Microbes ; 16(1): 2310291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38329115

RESUMO

Opioids, such as morphine and oxycodone, are widely used for pain management associated with chronic pancreatitis (CP); however, their impact on the progression and pain sensitivity of CP has never been evaluated. This report investigates the impact of opioid use on the severity of CP, pain sensitivity, and the gut microbiome. C57BL/6 mice were divided into control, CP, CP with morphine/oxycodone, and either morphine or oxycodone alone groups. CP was induced by administration of caerulein (50ug/kg/h, i.p. hourly x7, twice a week for 10 weeks). The mouse-to-pancreas weight ratio, histology, and Sirius red staining were performed to measure CP severity. Tail flick and paw pressure assays were used to measure thermal and mechanical pain. DNA was extracted from the fecal samples and subjected to whole-genome shotgun sequencing. Germ-free mice were used to validate the role of gut microbiome in sensitizing acute pancreatic inflammation. Opioid treatment exacerbates CP by increasing pancreatic necrosis, fibrosis, and immune-cell infiltration. Opioid-treated CP mice exhibited enhanced pain hypersensitivity and showed distinct clustering of the gut microbiome compared to untreated CP mice, with severely compromised gut barrier integrity. Fecal microbiota transplantation (FMT) from opioid-treated CP mice into germ-free mice resulted in pancreatic inflammation in response to a suboptimal caerulein dose. Together, these analyses revealed that opioids worsen the severity of CP and induce significant alterations in pain sensitivity and the gut microbiome in a caerulein CP mouse model. Microbial dysbiosis plays an important role in sensitizing the host to pancreatic inflammation.


Assuntos
Microbioma Gastrointestinal , Pancreatite Crônica , Animais , Camundongos , Analgésicos Opioides/efeitos adversos , Oxicodona/efeitos adversos , Disbiose/induzido quimicamente , Disbiose/tratamento farmacológico , Ceruletídeo/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Camundongos Endogâmicos C57BL , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/tratamento farmacológico , Pancreatite Crônica/patologia , Morfina/efeitos adversos , Dor/tratamento farmacológico , Inflamação
4.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338849

RESUMO

Distal Sensory Peripheral Neuropathy (DSP) is a common complication in HIV-infected individuals, leading to chronic pain and reduced quality of life. Even with antiretroviral therapy (ART), DSP persists, often prompting the use of opioid analgesics, which can paradoxically worsen symptoms through opioid-induced microbial dysbiosis. This study employs the HIV Tg26 mouse model to investigate HIV-DSP development and assess gut microbiome changes in response to chronic morphine treatment and ART using 16S rRNA sequencing. Our results reveal that chronic morphine and ART exacerbate HIV-DSP in Tg26 mice, primarily through mechanical pain pathways. As the gut microbiome may be involved in chronic pain persistence, microbiome analysis indicated distinct bacterial community changes between WT and Tg26 mice as well as morphine- and ART-induced microbial changes in the Tg26 mice. This study reveals the Tg26 mouse model to be a relevant system that can help elucidate the pathogenic mechanisms of the opioid- and ART-induced exacerbation of HIV-associated pain. Our results shed light on the intricate interplay between HIV infection, ART, opioid use, and the gut microbiome in chronic pain development. They hold implications for understanding the mechanisms underlying HIV-associated pain and microbial dysbiosis, with potential for future research focused on prevention and treatment strategies.


Assuntos
Dor Crônica , Infecções por HIV , Doenças do Sistema Nervoso Periférico , Camundongos , Animais , Morfina/efeitos adversos , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Analgésicos Opioides/efeitos adversos , Disbiose , RNA Ribossômico 16S/genética , Qualidade de Vida
5.
Gut Microbes ; 16(1): 2292224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38108125

RESUMO

There has been a rapid increase in neonates born with a history of prenatal opioid exposure. How prenatal opioid exposure affects pain sensitivity in offspring is of interest, as this may perpetuate the opioid epidemic. While few studies have reported hypersensitivity to thermal pain, potential mechanisms have not been described. This study posits that alterations in the gut microbiome may underly hypersensitivity to pain in prenatally methadone-exposed 3-week-old male offspring, which were generated using a mouse model of prenatal methadone exposure. Fecal samples collected from dams and their offspring were subjected to 16s rRNA sequencing. Thermal and mechanical pain were assessed using the tail flick and Von Frey assays. Transcriptomic changes in whole brain samples of opioid or saline-exposed offspring were investigated using RNA-sequencing, and midbrain sections from these animals were subjected to qPCR profiling of genes related to neuropathic and inflammatory pain pathways. Prenatal methadone exposure increased sensitivity to thermal and mechanical pain and elevated serum levels of IL-17a. Taxonomical analysis revealed that prenatal methadone exposure resulted in significant alterations in fecal gut microbiota composition, including depletion of Lactobacillus, Bifidobacterium, and Lachnospiracea sp and increased relative abundance of Akkermansia, Clostridium sensu stricto 1, and Lachnoclostridium. Supplementation of the probiotic VSL#3 in dams rescued hypersensitivity to thermal and mechanical pain in prenatally methadone-exposed offspring. Similarly, cross-fostering prenatally methadone-exposed offspring to control dams also attenuated hypersensitivity to thermal pain in opioid-exposed offspring. Modulation of the maternal and neonatal gut microbiome with probiotics resulted in transcriptional changes in genes related to neuropathic and immune-related signaling in whole brain and midbrain samples of prenatally methadone-exposed offspring. Together, our work provides compelling evidence of the gut-brain-axis in mediating pain sensitivity in prenatally opioid-exposed offspring.


Assuntos
Microbioma Gastrointestinal , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Animais , Feminino , Masculino , Analgésicos Opioides/efeitos adversos , Microbioma Gastrointestinal/genética , Disbiose/induzido quimicamente , Disbiose/microbiologia , RNA Ribossômico 16S/genética , Efeitos Tardios da Exposição Pré-Natal/microbiologia , Metadona , Dor
6.
iScience ; 26(11): 108166, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37915593

RESUMO

The cycle of substance use disorder (SUD) leading to dependence is a complex process involving multiple neurocircuitries and brain regions. The amygdala is the core brain region that is involved in processing withdrawal and anxiety and depressive-like behaviors. However, the transcriptional changes in each cell type within the amygdala during SUD remains unknown. Here, we performed single-cell RNA sequencing and classified all cell types in the mouse amygdala. We particularly focused on gene expression changes in glial cells under dependent state and compared to either naive or withdrawal state. Our data revealed distinct changes in key biological processes, such as gene expression, immune response, inflammation, synaptic transmission, and mitochondrial respiration. Significant differences were unraveled in the transcriptional profiles between dependence and withdrawal states. This report is the first single-cell RNA sequencing dataset from the amygdala under opioid dependence and withdrawal conditions, providing unique insights in understanding brain alterations during SUD.

7.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834066

RESUMO

Fecal microbiota transplantation (FMT) has emerged as a highly effective therapy for recurrent Clostridioides difficile infection (rCDI) and also a potential therapy for other diseases associated with dysbiotic gut microbiota. Monitoring metabolic changes in biofluids and excreta is a noninvasive approach to identify the biomarkers of microbial recolonization and to understand the metabolic influences of FMT on the host. In this study, the pre-FMT and post FMT urine samples from 11 rCDI patients were compared through metabolomic analyses for FMT-induced metabolic changes. The results showed that p-cresol sulfate in urine, a microbial metabolite of tyrosine, was rapidly elevated by FMT and much more responsive than other microbial metabolites of aromatic amino acids (AAAs). Because patients were treated with vancomycin prior to FMT, the influence of vancomycin on the microbial metabolism of AAAs was examined in a mouse feeding trial, in which the decreases in p-cresol sulfate, phenylacetylglycine, and indoxyl sulfate in urine were accompanied with significant increases in their AAA precursors in feces. The inhibitory effects of antibiotics and the recovering effects of FMT on the microbial metabolism of AAAs were further validated in a mouse model of FMT. Overall, urinary p-cresol sulfate may function as a sensitive and convenient therapeutic indicator on the effectiveness of antibiotics and FMT for the desired manipulation of gut microbiota in human patients.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Humanos , Camundongos , Animais , Transplante de Microbiota Fecal/métodos , Vancomicina , Resultado do Tratamento , Fezes/química , Infecções por Clostridium/terapia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/análise , Modelos Animais de Doenças , Recidiva
8.
Front Microbiol ; 14: 1233194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37670983

RESUMO

The current opioid pandemic is a major public health crisis in the United States, affecting millions of people and imposing significant health and socioeconomic burdens. Preclinical and clinical research over the past few decades has delineated certain molecular mechanisms and identified various genetic, epigenetic, and environmental factors responsible for the pathophysiology and comorbidities associated with opioid use. Opioid use-induced epigenetic modifications have been identified as one of the important factors that mediate genetic changes in brain regions that control reward and drug-seeking behavior and are also implicated in the development of tolerance. Recently, it has been shown that opioid use results in microbial dysbiosis, leading to gut barrier disruption, which drives systemic inflammation, impacting the perception of pain, the development of analgesic tolerance, and behavioral outcomes. In this review, we highlight the potential role of microbiota and microbial metabolites in mediating the epigenetic modifications induced by opioid use.

9.
World J Urol ; 41(11): 2933-2948, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37737900

RESUMO

PURPOSE: The goal of this systematic review was to examine the current literature on the urinary microbiome and its associations with noninfectious, nonmalignant, urologic diseases. Secondarily, we aimed to describe the most common bioinformatics used to analyze the urinary microbiome. METHODS: A comprehensive literature search of Ovid MEDLINE using the keywords "microbiota" AND "prostatic hyperplasia," "microbiota" AND "urinary bladder, overactive," "microbiota" AND "pelvic pain," and "microbiota" AND "urolithiasis" OR "nephrolithiasis" OR "urinary calculi" AND "calcium oxalate" was performed to identify relevant clinical microbiome studies associated with noninfectious benign urological conditions published from 2010 to 2022. We included human studies that evaluated the urinary, stone, or semen microbiota, or any combination of the above-mentioned locations. RESULTS: A total of 25 human studies met the inclusion criteria: 4 on benign prostatic hyperplasia (BPH), 9 on overactive bladder (OAB), 8 on calcium oxalate stones, and 4 on chronic pelvic pain syndrome (CPPS). Specific taxonomic profiles in the urine microbiome were associated with each pathology, and evaluation of alpha- and beta-diversity and relative abundance was accounted for most of the studies. Symptom prevalence and severity were also analyzed and showed associations with specific microbes. CONCLUSION: The study of the urogenital microbiome is rapidly expanding in urology. Noninfectious benign urogenital diseases, such as BPH, calcium oxalate stones, CPPS, and OAB were found to be associated with specific microbial taxonomies. Further research with larger study populations is necessary to solidify the knowledge of the urine microbiome in these conditions and to facilitate the creation of microbiome-based diagnostic and therapeutic approaches.


Assuntos
Microbiota , Hiperplasia Prostática , Bexiga Urinária Hiperativa , Cálculos Urinários , Masculino , Humanos , Hiperplasia Prostática/tratamento farmacológico , Oxalato de Cálcio , Bexiga Urinária Hiperativa/tratamento farmacológico , Dor Pélvica
10.
Gut Microbes ; 15(2): 2246184, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37610102

RESUMO

Opioid crisis is an ongoing epidemic since the past several decades in the United States. Opioid use-associated microbial dysbiosis is emerging as a key regulator of intestinal homeostasis and behavioral responses to opioid. However, the mechanistic insight into the role of microbial community in modulating host response is unavailable. To uncover the role of opioid-induced dysbiosis in disrupting intestinal homeostasis we utilized whole genome sequencing, untargeted metabolomics, and mRNA sequencing to identify changes in microbiome, metabolome, and host transcriptome respectively. Morphine treatment resulted in significant expansion of Parasuterella excrementihominis, Burkholderiales bacterium 1_1_47, Enterococcus faecalis, Enterorhabdus caecimuris and depletion of Lactobacillus johnsonii. These changes correlated with alterations in lipid metabolites and flavonoids. Significant alteration in microbial metabolism (metabolism of lipids, amino acids, vitamins and cofactors) and increased expression of virulence factors and biosynthesis of lipopolysaccharides (LPS) and lipoteichoic acid (LTA) were observed in microbiome of morphine-treated animals. In concurrence with changes in microbiome and metabolome extensive changes in innate and adaptive immune response, lipid metabolism, and gut barrier dysfunction were observed in the host transcriptome. Microbiome depleted mice displayed lower levels of inflammation, immune response and tissue destruction compared to mice harboring a dysbiotic microbiome in response to morphine treatment, thus establishing dysbiotic microbiome as mediator of morphine gut pathophysiology. Integrative analysis of multi-omics data highlighted the associations between Parasutterella excrementihominis, Burkholderiales bacterium 1_1_47, Enterococcus faecalis, Enterorhabdus caecimuris and altered levels of riboflavin, flavonoids, and lipid metabolites including phosphocholines, carnitines, bile acids, and ethanolamines with host gene expression changes involved in inflammation and barrier integrity of intestine. Omic analysis also highlighted the role of probiotic bacteria Lactobacillus johnsonii, metabolites flavonoids and riboflavin that were depleted with morphine as important factors for intestinal homeostasis. This study presents for the first time ever an interactive view of morphine-induced changes in microbial metabolism, strain level gut microbiome analysis and comprehensive view of changes in gut transcriptome. We also identified areas of potential therapeutic interventions to limit microbial dysbiosis and present a unique resource to the opioid research community.


Assuntos
Microbioma Gastrointestinal , Transtornos Relacionados ao Uso de Opioides , Animais , Camundongos , Analgésicos Opioides , Disbiose/induzido quimicamente , Multiômica , Riboflavina , Derivados da Morfina , Lipídeos
11.
Gut Microbes ; 15(1): 2242610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37589387

RESUMO

The ongoing opioid epidemic has left millions of people suffering from opioid use disorder due to the over-prescription of highly addictive substances. Chronic opioid exposure leads to dependence, where the absence of the drug results in negative symptoms of withdrawal, often driving patients to continue drug use; however, few therapeutic strategies are currently available to combat the cycle of addiction and the severity of morphine withdrawal. This study investigates the microbiome as a potential therapeutic target for morphine withdrawal, as gut dysbiosis caused by morphine use has been proven to contribute to other aspects of opioid use disorders, such as tolerance. Results show that although the microbiome during morphine withdrawal trends toward recovery from morphine-induced dysbiosis, there continues to be a disruption in the alpha and beta diversity as well as the abundance of gram-positive bacteria that may still contribute to the severity of morphine withdrawal symptoms. Germ-free mice lacking the microbiome did not develop somatic withdrawal symptoms, indicating that the microbiome is necessary for the development of somatic withdrawal behavior. Notably, only TLR2 but not TLR4 whole-body knockout models display less withdrawal severity, implicating that the microbiome, through a gram-positive, TLR2 mediated mechanism, drives opioid-induced somatic withdrawal behavior.


Assuntos
Microbioma Gastrointestinal , Transtornos Relacionados ao Uso de Opioides , Síndrome de Abstinência a Substâncias , Humanos , Camundongos , Animais , Morfina/efeitos adversos , Analgésicos Opioides/efeitos adversos , Receptor 2 Toll-Like/genética , Disbiose/induzido quimicamente , Disbiose/complicações , Síndrome de Abstinência a Substâncias/etiologia
12.
F S Sci ; 4(3): 257-264, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37321541

RESUMO

OBJECTIVES: To study how the semen microbiome profile in men with nonobstructive azoospermia (NOA) differs from that of fertile controls (FCs). DESIGN: Using quantitative polymerase chain reaction and 16S ribosomal RNA, we sequenced semen samples from men with NOA (follicle-stimulating hormone >10 IU/mL, testis volume <10 mL) and FCs and performed a comprehensive taxonomic microbiome analysis. SETTING: All patients were identified during evaluation at the outpatient male andrology clinic at the University of Miami. PATIENTS: In total, 33 adult men, including 14 diagnosed with NOA and 19 with proven paternity undergoing vasectomy, were enrolled. MAIN OUTCOME MEASURES: Bacterial species in the semen microbiome were identified. RESULTS: Alpha-diversity was similar between the groups, suggesting similar diversity within samples, whereas beta-diversity was different, suggesting differences in taxa between samples. In the NOA men, the phyla Proteobacteria and Firmicutes were underrepresented, and Actinobacteriota were overrepresented compared with FC men. At the genus level, Enterococcus was the most common amplicon sequence variant in both groups, whereas 5 genera differed significantly between the groups, including Escherichia and Shigella, Sneathia, and Raoutella. CONCLUSION: Our study showed significant differences in the seminal microbiome between men with NOA and fertile men. These results suggest a loss of functional symbiosis may be associated with NOA. Further research into the characterization and clinical utility of the semen microbiome and its causal role in male infertility is necessary.


Assuntos
Azoospermia , Adulto , Humanos , Masculino , Azoospermia/genética , Azoospermia/diagnóstico , Sêmen , Projetos Piloto , Testículo , Sequenciamento de Nucleotídeos em Larga Escala
13.
Front Immunol ; 14: 1156862, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168868

RESUMO

Background: The microbiome is essential to immune development, defense against pathogens, and modulation of inflammation. Microbial dysbiosis has been reported in various diseases including human immunodeficiency virus (HIV) and opioid use disorder (OUD). Notably, people living with HIV (PLWH) have been reported to both have higher rates of OUD and use opioids at higher rates than the general public. Thus, studying gut microbial alterations in people living with HIV and with OUD could elucidate mechanisms pertaining to how these conditions both shape and are shaped by the microbiome. However, to date few studies have investigated how HIV and OUD in combination impact the microbiome. Aim of review: Here, we review previous studies outlining interactions between HIV, opioid use, and microbial dysbiosis and describe attempts to treat this dysbiosis with fecal microbial transplantation, probiotics, and dietary changes. Key scientific concepts of review: While the limited number of studies prevent overgeneralizations; accumulating data suggest that HIV and opioid use together induce distinct alterations in the gut microbiome. Among the three existing preclinical studies of HIV and opioid use, two studies reported a decrease in Lachnospiraceae and Ruminococcaceae, and one study reported a decrease in Muribaculaceae in the combined HIV and opioid group relative to HIV-alone, opioid-alone, or control groups. These bacteria are known to modulate immune function, decrease colonic inflammation, and maintain gut epithelial barrier integrity in healthy individuals. Accordingly, modulation of the gut microbiome to restore gut homeostasis may be attempted to improve both conditions. While mixed results exist regarding treating dysbiosis with microbial restoration in PLWH or in those with opioid dependency, larger well-defined studies that can improve microbial engraftment in hosts hold much promise and should still be explored.


Assuntos
Microbioma Gastrointestinal , Infecções por HIV , Transtornos Relacionados ao Uso de Opioides , Humanos , Analgésicos Opioides/uso terapêutico , HIV , Disbiose/microbiologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/microbiologia , Inflamação , Clostridiales
14.
Metabolites ; 13(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36984873

RESUMO

Morphine administration causes system-level metabolic changes. Here, we show that morphine-tolerant mice exhibited distinct plasma metabolic signatures upon acute and chronic administration. We utilized a mouse model of morphine tolerance by exposing mice to increasing doses of the drug over 4 days. We collected plasma samples from mice undergoing acute or chronic morphine or saline injections and analyzed them using targeted GC-MS-based metabolomics to profile approximately 80 metabolites involved in the central carbon, amino acid, nucleotide, and lipid metabolism. Our findings reveal distinct alterations in plasma metabolite concentrations in response to acute or chronic morphine intake, and these changes were linked to the development of tolerance to morphine's analgesic effects. We identified several metabolites that had been differentially affected by acute versus chronic morphine use, suggesting that metabolic changes may be mitigated by prolonged exposure to the drug. Morphine-tolerant mice showed a restoration of amino acid and glycolytic metabolites. Additionally, we conducted reconstructed metabolic network analysis on the first 30 VIP-ranked metabolites from the PLSDA of the saline, acute, and morphine-tolerant mice groups, which uncovered four interaction networks involving the amino acid metabolism, the TCA cycle, the glutamine-phenylalanine-tyrosine pathway, and glycolysis. These pathways were responsible for the metabolic differences observed following distinct morphine administration regimens. Overall, this study provides a valuable resource for future investigations into the role of metabolites in morphine-induced analgesia and associated effects following acute or chronic use in mice.

15.
Br J Pharmacol ; 180(10): 1362-1378, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36562107

RESUMO

BACKGROUND AND PURPOSE: Opioids are commonly used for the management of cancer-associated pain and chemotherapy-induced diarrhoea. The chemotherapeutic irinotecan (CPT-11) causes severe gastrointestinal (GI) toxicity due to deconjugation of inactive metabolite SN-38 glucuronide (SN-38G) by bacterial ß-glucuronidases to the active 7-ethyl-10-hydroxycamptothecin (SN-38). Opioids are known to cause gut microbial dysbiosis, this study evaluated whether CPT-11 anti-tumour efficacy and GI toxicity are exacerbated by opioid co-administration. EXPERIMENTAL APPROACH: Eight-week-old C57BL/6 male mice were co-administration with CPT-11 ± opioid. 16S rRNA sequencing was used for gut microbiome analysis. LC-MS analyses of plasma and intestinal extracts were performed to investigate the pharmacokinetic profile of CPT-11. Histological analysis and quantitative real-time polymerase chain reaction were used to determine the severity of intestinal tissue damage. Human liver microsome In vitro assay was performed to confirm the effects of opioids on CPT-11 metabolism. KEY RESULTS: Gut microbiome analysis showed that morphine treatment induced enrichment of ß-glucuronidase-producing bacteria in the intestines of CPT-11-treated mice, resulting in SN-38 accumulation and exacerbation of GI toxicity in the small intestine. Oral administration of both antibiotics and glucuronidase inhibitor protected mice against GI toxicity induced with CPT-11 and morphine co-administration, implicating a microbiome-dependent mechanism. Additionally, morphine and loperamide decreased the plasma concentration of SN-38 and compromised CPT-11 anti-tumour efficacy, this seemed to be microbiome independent. CONCLUSION AND IMPLICATIONS: Gut microbiota play a significant role in opioid and chemotherapeutic agent drug-drug interactions. Inhibition of gut microbial glucuronidase may also prevent adverse GI effects of CPT-11 in patients on opioids.


Assuntos
Antineoplásicos Fitogênicos , Neoplasias , Humanos , Camundongos , Masculino , Animais , Irinotecano , Analgésicos Opioides/farmacologia , Disbiose , Modelos Animais de Doenças , RNA Ribossômico 16S , Antineoplásicos Fitogênicos/toxicidade , Camundongos Endogâmicos C57BL , Camptotecina/toxicidade , Bactérias , Glucuronidase/metabolismo , Glucuronidase/farmacologia , Derivados da Morfina/farmacologia
16.
Br J Pharmacol ; 180(12): 1582-1596, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36585367

RESUMO

BACKGROUND AND PURPOSE: Opioids are the standard drug for pain management; however, their effects on gastric dysfunction are relatively understudied. Opioid users have a higher incidence of gastric pathology leading to increased hospitalization. Herein, we investigated the consequences of morphine use on gastric pathology and the underlying mechanisms. We further investigated the therapeutic benefit of proton pump inhibition to overcome morphine-mediated gastric inflammation. EXPERIMENTAL APPROACH: Mice were implanted with 25 mg slow-release morphine and placebo pellets. Gastric microbiome analyses were performed. Gastric damage was assayed. Gastric pH was measured. Germ-free and TLR2KO mice were used to investigate the mechanisms. Gastroprotective studies were performed with the proton pump inhibitor (PPI) omeprazole. KEY RESULTS: Chronic morphine treatment alters gastric microbial composition and induces preferential expansion of pathogenic bacterial communities such as Streptococcus and Pseudomonas. Morphine causes disruption of the gastric mucosal layer, increases apoptosis, and elevates inflammatory cytokines. Moreover, morphine-mediated gastric pathology was significantly attenuated in germ-free mice, and reconstitution of morphine gastric microbiome in germ-free mice resulted gastric inflammation. In addition, morphine-mediated gastric inflammation was attenuated in TLR2KO mice. Morphine causes a decrease in gastric pH, which contributes to gastric dysbiosis leads to gastric inflammation. Omeprazole treatment inhibits gastric acidity, rescuing morphine-induced gastric dysbiosis and preventing inflammation. CONCLUSION AND IMPLICATIONS: This study attributes morphine-induced gastric acidity as a driver of gastric dysbiosis and pathology and proposes the therapeutic use of PPI as an inexpensive approach for the clinical management of morphine-associated pathophysiology.


Assuntos
Disbiose , Receptor 2 Toll-Like , Camundongos , Animais , Disbiose/induzido quimicamente , Morfina/farmacologia , Inibidores da Bomba de Prótons/efeitos adversos , Omeprazol/farmacologia , Analgésicos Opioides/farmacologia , Inflamação/tratamento farmacológico
17.
Microbiol Spectr ; 11(1): e0247222, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36511710

RESUMO

This study characterized compositional and functional shifts in the intestinal and oral microbiome in HIV-positive patients on antiretroviral therapy compared to HIV-negative individuals. Seventy-nine specimens were collected from 5 HIV-positive and 12 control subjects from five locations (colon brush, colon wash, terminal ileum [TI] brush, TI wash, and saliva) during colonoscopy and at patient visits. Microbiome composition was characterized using 16S rRNA sequencing, and microbiome function was predicted using bioinformatics tools (PICRUSt and BugBase). Our analysis indicated that the ß-diversity of all intestinal samples (colon brush, colon wash, TI brush, and TI wash) from patients with HIV was significantly different from patients without HIV. Specifically, bacteria from genera Prevotella, Fusobacterium, and Megasphaera were more abundant in samples from HIV-positive patients. On the other hand, bacteria from genera Ruminococcus, Blautia, and Clostridium were more abundant in samples from HIV-negative patients. Additionally, HIV-positive patients had higher abundances of biofilm-forming and pathogenic bacteria. Furthermore, pathways related to translation and nucleotide metabolism were elevated in HIV-positive patients, whereas pathways related to lipid and carbohydrate metabolism were positively correlated with samples from HIV-negative patients. Our analyses further showed variations in microbiome composition in HIV-positive and negative patients by sampling site. Samples from colon wash, colon brush, and TI wash were significant between groups, while samples from TI brush and saliva were not significant. Taken together, here, we report altered intestinal microbiome composition and predicted function in patients with HIV compared to uninfected patients, though we found no changes in the oral microbiome. IMPORTANCE Over 37 million people worldwide are living with HIV. Although the availability of antiretroviral therapy has significantly reduced the number of AIDS-related deaths, individuals living with HIV are at increased risk for opportunistic infections. We now know that HIV interacts with the trillions of bacteria, fungi, and viruses in the human body termed the microbiome. Only a limited number of previous studies have compared variations in the oral and gastrointestinal microbiome with HIV infection. Here, we detail how the oral and gastrointestinal microbiome changes with HIV infection, having used 5 different sampling sites to gain a more comprehensive view of these changes by location. Our results show site-specific changes in the intestinal microbiome associated with HIV infection. Additionally, we show that while there were significant changes in the intestinal microbiome, there were no significant changes in the oral microbiome.


Assuntos
Microbioma Gastrointestinal , Infecções por HIV , Microbiota , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/microbiologia , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Mucosa Intestinal/microbiologia , Bactérias/genética
18.
Gut Microbes ; 14(1): 2143225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36409161

RESUMO

The gut microbial ecosystem exhibits a complex bidirectional communication with the host and is one of the key contributing factors in determining mucosal immune homeostasis or an inflammatory state. Opioid use has been established to induce gut microbial dysbiosis consistent with increased intestinal tissue inflammation. In this study, we investigated the role of infiltrated immune cells in morphine-induced intestinal tissue damage and gut microbial dysbiosis in mice. Results reveal a significant increase in chemokine expression in intestinal tissues followed by increased neutrophil infiltration post morphine treatment which is direct consequence of a dysbiotic microbiome since the effect is attenuated in antibiotics treated animals and in germ-free mice. Neutrophil neutralization using anti-Ly6G monoclonal antibody showed a significant decrease in tissue damage and an increase in tight junction protein organization. 16S rRNA sequencing on intestinal samples highlighted the role of infiltrated neutrophils in modulating microbial community structure by providing a growth benefit for pathogenic bacteria, such as Enterococcus, and simultaneously causing a significant depletion of commensal bacteria, such as Lactobacillus. Taken together, we provide the first direct evidence that neutrophil infiltration contributes to morphine-induced intestinal tissue damage and gut microbial dysbiosis. Our findings implicate that inhibition of neutrophil infiltration may provide therapeutic benefits against gastrointestinal dysfunctions associated with opioid use.


Assuntos
Microbioma Gastrointestinal , Microbiota , Transtornos Relacionados ao Uso de Opioides , Animais , Camundongos , Infiltração de Neutrófilos , Disbiose/induzido quimicamente , Morfina , Analgésicos Opioides , RNA Ribossômico 16S/genética
19.
Pharmaceutics ; 14(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36145627

RESUMO

Despite the many advancements in the field of pain management, the use of intravenous opioids, such as morphine, in neonates is still a challenge for clinicians and researchers, as the available evidence concerning the long-term consequences of such an early exposure is limited. In particular, little is known concerning the long-term consequences of neonatal morphine exposure on the gut microbiome, which has been identified as a key modulator of health and diseases. Consequently, the purpose of this study was to investigate those long-term consequences of neonatal morphine on the gut microbiome. Newborn mice were exposed to either morphine (5 mg/kg/day) or saline for a duration of 7 ± 2 days. Fecal samples were collected during adolescence and adulthood to longitudinally assess the gut microbiome. DNA extracted from the stool samples were sent out for 16s rRNA sequencing. During adolescence, neonatal morphine resulted in a significant increase of α-diversity and an overall decrease in the abundance of several commensal genera. During adulthood, ß-diversity revealed a significantly different microbial composition of the neonatally morphine-exposed mice than that of the controls. The results demonstrate that morphine exposure during this critical developmental period resulted in long-lasting changes, particularly a reduction in several commensal bacteria. Thus, an adjunct therapeutic intervention with probiotics could potentially be used along with opioids to manage pain while attenuating the long-term co-morbidities of neonatal morphine later in life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...